2013年
北海区海洋灾害公报

国家海洋局北海分局
二〇一四年三月
2013年，国家海洋局北海分局及北海区各级海洋主管部
门进一步强化海洋观测与预警管理，有效开展了海洋防灾
减灾工作，根据2013年北海区海洋观测数据和海洋灾害情
况的调查、统计和分析结果，编制了《2013年北海区海洋灾害
公报》，现予以发布。

国家海洋局北海分局 局长：

2014年3月 青岛
目录

1 概述.. 1

2 风暴潮... 3

3 海浪... 8

4 海冰... 12

5 绿潮.. 18

6 赤潮.. 22

7 海岸侵蚀.. 24

8 海水入侵与土壤盐渍化... 25

9 海平面变化... 28

10 表层海水温度变化.. 31

11 对策建议.. 32
1 概述

2013年，北海区共发生灾害性海浪过程14次；发生风暴潮过程13次，其中台风风暴潮1次，温带风暴潮12次；发生赤潮14次，累计面积1880平方公里；3月至8月黄海发生了绿潮，影响了山东日照、青岛、烟台和威海等近岸海域；2012/2013年冬季渤海及黄海北部海域海冰冰情为常冰年略偏重。2013年，渤海沿海海平面比常年偏高107毫米，为1980年以来第二高位，黄海沿海偏高88毫米；表层海水温度年平均值与常年基本持平；局部岸段有海岸侵蚀现象。

2013年，北海区各类海洋灾害造成直接经济损失共计4.68亿元，无人员死亡或失踪，因灾直接经济损失与2012年相比，减少了55.21亿元，为近5年来最轻的一年（图1-1）。

![图1-1 2006~2013年北海区海洋灾害直接经济损失和死亡（含失踪）人数](image)

2013年，北海区海洋灾害损失主要由风暴潮和海冰灾害造成（表1-1）。各类海洋灾害中，直接经济损失最严重的是海冰灾
2013年 北海区海洋灾害公报

灾害，为3.22亿元，占总直接经济损失的68.76%。

<table>
<thead>
<tr>
<th>灾害种类</th>
<th>死亡(含失踪)人数</th>
<th>直接经济损失(亿元)</th>
</tr>
</thead>
<tbody>
<tr>
<td>风暴潮(含近岸浪)</td>
<td>0</td>
<td>1.46</td>
</tr>
<tr>
<td>海冰</td>
<td>0</td>
<td>3.22</td>
</tr>
<tr>
<td>合计</td>
<td>0</td>
<td>4.68</td>
</tr>
</tbody>
</table>

2013年，北海区海洋灾害直接经济损失最严重的是辽宁省，损失3.24亿元，其次是山东省，损失1.44亿元，河北省和天津市均无直接经济损失（表1-2）。

<table>
<thead>
<tr>
<th>省(直辖市)</th>
<th>主要致灾原因</th>
<th>死亡(含失踪)人数</th>
<th>直接经济损失(亿元)</th>
</tr>
</thead>
<tbody>
<tr>
<td>辽宁省</td>
<td>风暴潮、海冰</td>
<td>0</td>
<td>3.24</td>
</tr>
<tr>
<td>河北省</td>
<td>—</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>天津市</td>
<td>—</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>山东省</td>
<td>风暴潮</td>
<td>0</td>
<td>1.44</td>
</tr>
<tr>
<td>合计</td>
<td>—</td>
<td>0</td>
<td>4.68</td>
</tr>
</tbody>
</table>

2013年初，北海分局组织相关单位分赴辽宁、河北、天津、山东等地，选取易受海洋灾害影响的重点目标开展现场调研，全面了解港口运输、核电、中心渔港、滨海旅游、临海经济区等行业对海洋灾害预警的具体需求，于2013年7月1日起正式展开了北海区7个重点保障目标的精细化海洋预报和灾害警报工作，为北海区全面开展精细化预报服务起到了示范作用。
2 风暴潮

2.1 风暴潮灾害

2.1.1 风暴潮灾害概况

2013 年，北海区沿岸共发生 13 次风暴潮过程(表 2-1)，与 2012 年风暴潮过程次数相同，其中温带风暴潮 12 次，2 次造成损失；台风风暴潮 1 次，未造成损失。

表 2-1 2013 年北海区风暴潮过程

<table>
<thead>
<tr>
<th>发生时间</th>
<th>导致风暴潮天气系统</th>
<th>影响范围</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 月 12 日至 13 日</td>
<td>冷空气影响</td>
<td>渤海湾、莱州湾和山东半岛北部沿岸</td>
</tr>
<tr>
<td>3 月 19 日至 20 日</td>
<td>冷空气影响</td>
<td>渤海湾和莱州湾沿岸</td>
</tr>
<tr>
<td>3 月 23 日至 24 日</td>
<td>冷空气影响</td>
<td>渤海湾和莱州湾沿岸</td>
</tr>
<tr>
<td>4 月 5 日至 6 日</td>
<td>冷空气和气旋共同影响</td>
<td>渤海湾、莱州湾和山东半岛北部沿岸</td>
</tr>
<tr>
<td>4 月 13 日至 14 日</td>
<td>冷空气和气旋共同影响</td>
<td>渤海湾和莱州湾沿岸</td>
</tr>
<tr>
<td>4 月 15 日至 16 日</td>
<td>冷空气和气旋共同影响</td>
<td>渤海湾和莱州湾沿岸</td>
</tr>
<tr>
<td>4 月 17 日至 18 日</td>
<td>冷空气影响</td>
<td>渤海湾和莱州湾沿岸</td>
</tr>
<tr>
<td>5 月 26 日至 28 日</td>
<td>江淮气旋影响</td>
<td>山东半岛、莱州湾、渤海湾、辽东湾和辽东半岛南部沿岸</td>
</tr>
<tr>
<td>8 月 22 日至 23 日</td>
<td>第 12 号热带风暴“潭美”外围影响</td>
<td>山东南部沿岸</td>
</tr>
<tr>
<td>8 月 29 日至 30 日</td>
<td>冷空气影响</td>
<td>渤海湾和莱州湾沿岸</td>
</tr>
<tr>
<td>9 月 23 日至 24 日</td>
<td>冷空气影响</td>
<td>渤海湾、莱州湾和山东半岛北部沿岸</td>
</tr>
<tr>
<td>10 月 14 日至 15 日</td>
<td>冷空气影响</td>
<td>渤海湾、莱州湾和山东半岛北部沿岸</td>
</tr>
<tr>
<td>11 月 9 日至 10 日</td>
<td>冷空气影响</td>
<td>渤海湾、莱州湾和山东半岛北部沿岸</td>
</tr>
</tbody>
</table>
2013年，北海区风暴潮灾害（含近岸浪）直接经济损失1.46亿元，无人员死亡或失踪，总体灾情较轻（图2-1）。2013年风暴潮灾害主要发生在山东和辽宁两省，直接经济损失分别为1.44亿元和0.02亿元（表2-2）。

![图2-1 2004~2013年风暴潮灾害直接经济损失和死亡（含失踪）人数]

<table>
<thead>
<tr>
<th>省（直辖市）</th>
<th>受灾面积</th>
<th>设施损毁</th>
<th>直接经济损失（亿元）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>水产养殖（公顷）</td>
<td>农田（公顷）</td>
<td>房屋（间）</td>
</tr>
<tr>
<td>辽宁省</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>河北省</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>天津市</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>山东省</td>
<td>7 239</td>
<td>0</td>
<td>411</td>
</tr>
<tr>
<td>合 计</td>
<td>7 239</td>
<td>411</td>
<td>15.31</td>
</tr>
</tbody>
</table>
2.1.2 主要风暴潮灾害过程

2013 年，北海区发生 2 次温带风暴潮灾害过程，其中 5 月 26 日至 28 日由江淮气旋引起的温带风暴潮过程造成直接经济损失约 1.44 亿元，灾害主要发生在山东省的日照、青岛、威海及烟台沿海。

“0526”温带风暴潮过程

此次温带风暴潮过程从 5 月 26 日至 28 日自南向北对黄海、渤海南部海域造成了较大影响。在此过程中，山东半岛沿岸、莱州湾、渤海湾、辽东湾和辽东半岛南部沿岸分别出现了 40~80 厘米、80~120 厘米、70~90 厘米、50~80 厘米和 40~70 厘米的风暴增水。其中，岚山、日照、石岛、蓬莱、潍坊、葫芦岛、鲅鱼圈、老虎滩和东港验潮站出现了超过当地警戒潮位的高潮位，青岛（五号码头）、成山头、芝罘岛、孤东、黄骅、塘沽和曹妃甸验潮站出现了接近当地警戒潮位的高潮位。

受“0526”温带风暴潮过程影响，山东省倒塌房屋 5 间，损坏房屋 406 间，水产养殖受灾面积 7239 公顷，淹没盐田 26.7 公顷，水产养殖受灾面积 6556 公顷，水产养殖成灾面积 520 公顷，水产养殖绝收面积 163 公顷，水产养殖损失 6028 吨，养殖设备、设施损失 1475 个，毁坏渔船船只 64 艘，损坏渔船船只 45 艘，损坏码头 4 公里，损坏防波堤 1.58 公里，损毁海堤、护岸 5.23 公里，损毁道路 4.3 公里，损毁海上桥梁 1 座，直接经济损失 1.44 亿元。
风暴潮：由于热带气旋、温带天气系统、海上飑线等风暴过境所伴随的强风和气压骤变而引起的局部海面振荡或非周期性异常升高（降低）现象。

风暴潮灾害：风暴潮叠加在天文潮之上，而周期为数秒或十几秒的风浪、涌浪又叠加在前二者之上。由前二者结合（通常称为总潮位，或称为风暴潮汐）引起的沿岸涨水会造成灾害，而三者的结合引起的沿岸涨水能酿成巨大灾害。由前二者或三者的结合引起的沿岸涨水造成的灾害，通称为风暴潮灾害。
2.2 潮汐特征

渤海和黄海潮汐性质较为复杂，基本以不规则半日潮为主，同时又有规则日潮和不规则日潮区域。2013 年，东港验潮站平均潮差最大，青岛验潮站次之，东营港验潮站最小。

图 2-6 2013年北海区典型验潮站的潮差（单位：厘米）

近几年，北海区各级海洋主管部门高度重视基准潮位核定工作，并相继开展了所辖海域的警戒潮位核定工作。2013年，国家海洋局北海分局加强了警戒潮位核定初审管理工作，编制印发了《北海区警戒潮位核定技术报告初步审核工作流程（试行）》，规范了分局履行警戒潮位核定技术报告初审职责的程序，2013年完成对天津市、河北省和青岛市警戒潮位核定的初审工作，目前天津和河北已启用新的警戒潮位值。
3 海浪

3.1 海浪灾害

3.1.1 海浪灾害概况

2013年，北海区共发生有效波高超过2.5米的灾害性海浪过程14次，其中冷空气浪8次，冷空气和气旋配合浪4次，气旋浪2次（表3-1），超过4.0米的灾害性海浪过程出现8次。与2011和2012年台风频繁影响北海区相比，2013年未出现台风引起的大浪过程。

2013年，北海区未出现因海浪灾害造成的直接经济损失和人员死亡（含失踪），为近十年来最轻（图3-1）。

[1] 有效波高：海浪连续记录中逐个波高，从大到小排列，取波高总个数的前1/3个大波波高的平均值。
<table>
<thead>
<tr>
<th>发生时间</th>
<th>致灾原因</th>
<th>影响范围</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 月 1 日至 2 日</td>
<td>冷空气与气旋配合浪</td>
<td>渤海、黄海</td>
</tr>
<tr>
<td>2 月 28 日至 3 月 1 日</td>
<td>冷空气与气旋配合浪</td>
<td>渤海、黄海</td>
</tr>
<tr>
<td>3 月 9 日至 10 日</td>
<td>冷空气与气旋配合浪</td>
<td>渤海、黄海</td>
</tr>
<tr>
<td>3 月 12 日至 13 日</td>
<td>冷空气浪</td>
<td>渤海、黄海</td>
</tr>
<tr>
<td>3 月 18 日至 20 日</td>
<td>冷空气浪</td>
<td>渤海、黄海</td>
</tr>
<tr>
<td>3 月 21 日至 22 日</td>
<td>冷空气浪</td>
<td>渤海、黄海</td>
</tr>
<tr>
<td>4 月 18 日至 19 日</td>
<td>冷空气浪</td>
<td>渤海、黄海</td>
</tr>
<tr>
<td>5 月 26 日至 28 日</td>
<td>气旋浪</td>
<td>渤海、黄海</td>
</tr>
<tr>
<td>9 月 23 日至 24 日</td>
<td>冷空气浪</td>
<td>渤海、黄海</td>
</tr>
<tr>
<td>10 月 14 日至 15 日</td>
<td>冷空气浪</td>
<td>渤海、黄海</td>
</tr>
<tr>
<td>11 月 9 日至 10 日</td>
<td>冷空气浪</td>
<td>渤海、黄海</td>
</tr>
<tr>
<td>11 月 16 日至 18 日</td>
<td>冷空气与气旋配合浪</td>
<td>渤海、黄海</td>
</tr>
<tr>
<td>11 月 24 日至 25 日</td>
<td>气旋浪</td>
<td>渤海、黄海</td>
</tr>
<tr>
<td>11 月 27 日至 28 日</td>
<td>冷空气浪</td>
<td>渤海、黄海</td>
</tr>
</tbody>
</table>

3.1.2 主要海浪灾害过程

“0526”气旋浪

5 月 26 日至 28 日，江淮气旋从山东南部进入黄海，受其影响，黄海海域出现了 3.5 米到 4.5 米的大浪到巨浪区，最大波高 6.0 米。
3.2.1 浪向分布特征

渤海和黄海波浪季节变化显著，冬季主要受冷空气影响，以偏北向浪为主；夏季天气系统较弱，主要受季风影响，多偏南向浪；春、秋两季为冬、夏季系统过渡时期，天气过程复杂，浪向
多变，盛行浪不明显。

3.2.2 浪高分布特征

北海区各海域中，黄海北部有效波高平均值最大。各季节中，黄海北部冬季有效波高平均值最大，辽东湾、黄海中部秋季和冬季有效波高平均值最大，其他海域秋季最大。各季节平均有效波高分布见表3-2。

按照波浪级别出现频率进行统计，渤海湾、莱州湾小浪出现频率最高，辽东湾、渤海中部、黄海北部和中部轻浪出现频率最高（图3-4）。

| 表3-2 2013年北海区各海域各季节平均有效波高（单位：米） |
海域	辽东湾	渤海湾	莱州湾	渤海中部	黄海北部	黄海中部
季节						
春	0.6	0.6	0.6	0.7	0.9	0.8
夏	0.4	0.4	0.5	0.4	0.8	0.6
秋	0.8	0.7	0.8	0.9	0.9	0.8
冬	0.8	0.6	0.7	0.8	1.1	0.8

图3-4 2013年北海区海域各级波高频率分布
4 海冰

4.1 海冰灾害

2012/2013 年冬季，北海区海冰灾害直接经济损失为 3.22 亿元，海冰灾害损失主要集中在辽宁省、河北省、山东省和天津市未出现明显的海冰灾害（表 4-1）。海冰灾害所造成的损失主要为海洋渔业损失，水产养殖受灾面积达 22920 公顷。

表 4-1 2012/2013 年冬季北海区海冰灾害直接经济损失

<table>
<thead>
<tr>
<th>省（直辖市）</th>
<th>海洋渔业损失</th>
<th>封冻港口数量（个）</th>
<th>直接经济损失（亿元）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>水产养殖受灾面积（公顷）</td>
<td>损失水产养殖数量（吨）</td>
<td>封冻渔船数量（艘）</td>
</tr>
<tr>
<td>辽宁省</td>
<td>22920</td>
<td>19600</td>
<td>2</td>
</tr>
<tr>
<td>合 计</td>
<td>22920</td>
<td>19600</td>
<td>2</td>
</tr>
</tbody>
</table>

图 4-1 2008-2013 年北海区海冰灾害直接经济损失
4.2 冰情特征

4.2.1 北海区冰情特征

2012/2013 年冬季北海区冰情为常冰年略偏重（冰级 3.5），冰情主要特征如下：

1）严重冰期为 52 天，较常年偏长；严重冰日为 1 月 2 日，较常年提前；融冰日为 2 月 23 日，较常年推后。

2）各海域浮冰外缘线离岸最大距离和海冰最大分布面积均较常年偏大。辽东湾浮冰外缘线离岸最大距离为 89 海里，海冰最大分布面积为 23 041 平方公里，均出现在 2013 年 2 月 8 日。

3）大部分海域冰厚与常年状况持平。
图 4-6 2013 年 2 月 8 日渤海及黄海北部海域海冰分布

图 4-7 2012/2013 年冬季北海区各海域海冰分布面积变化
<table>
<thead>
<tr>
<th>要素</th>
<th>辽东湾</th>
<th>渤海湾</th>
<th>莱州湾</th>
<th>黄海北部</th>
</tr>
</thead>
<tbody>
<tr>
<td>浮冰外缘线离岸最大距离（海里）</td>
<td>89</td>
<td>22</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>海冰最大分布面积（平方公里）</td>
<td>23041</td>
<td>6490</td>
<td>4102</td>
<td>6821</td>
</tr>
<tr>
<td>平整冰单层厚度（厘米）</td>
<td>一般</td>
<td>10~20</td>
<td>5~15</td>
<td>5~10</td>
</tr>
<tr>
<td>最大</td>
<td>45</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

4.2.2 各海湾冰情特征

4.2.2.1 辽东湾

2012/2013年冬季辽东湾冰情较常年略偏重，主要表现为浮冰外缘线离岸最大距离和海冰最大分布面积均较常年偏大。海冰最大分布面积23041平方公里，出现在2月8日，初冰日为12月4日，终冰日为3月20日，严重冰期52天，浮冰外缘线离岸最大距离89海里。

4.2.2.2 渤海湾

2012/2013年冬季渤海湾
北海区海洋灾害公报

冰情接近常年，海冰最大分布面积 6490 平方公里，出现在 1 月 10 日，初冰日为 12 月 12 日，终冰日为 2 月 28 日，严重冰期 44 天，浮冰外缘线离岸最大距离 22 海里。

4.2.2.3 莱州湾

2012/2013 年冬季莱州湾冰情略重于常年，海冰最大分布面积 4102 平方公里，出现在 1 月 5 日，初冰日为 12 月 18 日，终冰日为 2 月 22 日，严重冰期 21 天，浮冰外缘线离岸最大距离 28 海里。

4.2.2.4 黄海北部

2012/2013 年冬季黄海北部冰情较常年略偏重，海冰最大分布面积 6821 平方公里，出现在 2 月 8 日，初冰日为 12 月 16 日，终冰日为 3 月 5 日，严重冰期 53 天，浮冰外缘线离岸最大距离 24 海里。

2013年1月，国家海洋北海分局及北海区各级海洋主管部门按照国家海洋局的统一部署，选取易受海冰灾害影响的港口运输、核电、石油平台、渔业捕捞和水产养殖及有居民海岛等重点目标进行了现场调研，了解其海冰防灾减灾的需求，为进一步开展海冰精细化预报和科学评估海冰灾害影响奠定了基础。

2013年国家海洋局北海分局负责完成了“全国海冰灾害风险评估和区划”及“河北省海冰灾害风险评估和区划（试点）”工作，为有效规避海冰灾害影响，科学安排结冰海区及其沿岸的经济社会发展布局提供技术支持。
5 绿潮

5.1 绿潮灾害

2013 年 3 月到 8 月黄海海域发生了绿潮灾害，主要影响了山东省南部日照至威海近岸海域，在日照、青岛、烟台、威海等地有绿潮登陆，对沿岸渔业、水产养殖、海洋环境、景观和生态服务功能造成了一定的影响。

2013 年 3 月中下旬在江苏如东沿海海域发现零星漂浮绿潮藻；5 月 10 日在黄海南部海域通过卫星遥感发现绿潮，覆盖面积约 5.5 平方公里，分布面积约 330 平方公里。5 月中下旬开始绿潮的分布面积不断扩大，并持续向偏北方向漂移。5 月 25 日~26 日，绿潮开始进入北海区管辖海域，6 月 2 日绿潮进入青岛管辖海域。6 月 5 日前后，绿潮开始影响到日照东南沿岸海域；6 月 9 日前后，绿潮逐渐影响到青岛近岸海域；6 月 24 日前后，绿潮开始影响海阳近岸海域；6 月 27 日，绿潮覆盖面积 790 平方公里，分布面积 28900 平方公里，其最北端开始影响乳山南侧近岸海域；6 月 30 日，绿潮覆盖面积 665 平方公里，分布面积 29733 平方公里，其中 35°N 以北的海域绿潮覆盖面积 494 平方公里，分布面积 24537 平方公里（图 5-1）。在此期间，少量绿潮陆续在日照—青岛—海阳—乳山—文登等沿岸登陆。7 月，绿潮主体向北偏东方向漂移，进入消亡过程，影响到荣成附近海域，7 月 27 日绿潮最北端达到成山头东南侧海域 (37°17’ N)，至 8 月 14 日绿潮基本消失。
5.2 绿潮特征

2013 年绿潮发展过程有较为明显的特征：绿潮影响岸段长，对近岸影响程度偏重；达到卫星可监测规模的时间较早；绿潮整体位置偏西；绿潮覆盖面积和分布面积偏大；首次发现大面积马尾藻聚集于日照以东远岸和青岛沿海。

2008~2013 年我国黄海沿岸海域绿潮分布特征见表 5-1。
表 5-1 2008~2013 年我国黄海沿岸海域绿潮分布特征

<table>
<thead>
<tr>
<th>年份</th>
<th>最大分布面积 (平方公里)</th>
<th>最大覆盖面积 (平方公里)</th>
<th>卫星首次发现时间与地点</th>
<th>进入北海区海域的时间</th>
<th>结束时间</th>
<th>持续时间</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>25 000</td>
<td>540</td>
<td>5月14日盐城外海</td>
<td>5月底</td>
<td>9月1日</td>
<td>110天</td>
</tr>
<tr>
<td>2009</td>
<td>58 000</td>
<td>2100</td>
<td>5月20日盐城外海</td>
<td>6月7日</td>
<td>8月22日</td>
<td>94天</td>
</tr>
<tr>
<td>2010</td>
<td>29 800</td>
<td>530</td>
<td>6月2日盐城外海</td>
<td>6月7日</td>
<td>8月17日</td>
<td>76天</td>
</tr>
<tr>
<td>2011</td>
<td>26 400</td>
<td>560</td>
<td>5月27日盐城外海</td>
<td>6月7日</td>
<td>8月17日</td>
<td>82天</td>
</tr>
<tr>
<td>2012</td>
<td>19 610</td>
<td>267</td>
<td>5月16日盐城外海</td>
<td>5月24日</td>
<td>8月30日</td>
<td>107天</td>
</tr>
<tr>
<td>2013</td>
<td>29 733</td>
<td>790</td>
<td>5月10日盐城外海</td>
<td>5月25日</td>
<td>8月14日</td>
<td>97天</td>
</tr>
</tbody>
</table>

![图 5-2 2013 年 6 月 29 日青岛市小公岛附近海域绿潮](image1)

![图 5-3 2013 年 6 月 20 日日照以东海域马尾藻](image2)
绿潮：是指海洋大型藻类在一定环境条件下暴发性增殖或聚集形成大面积漂浮的海洋生态异常现象。

自2007年，黄海连续7年在夏季发生绿潮。2013年6月中旬，日照以东至青岛以南绿潮分布海域内，首次发现大面积漂浮褐藻——马尾藻，该藻是一种新型的绿潮种类。马尾藻绿潮的发生增大了山东半岛附近海域绿潮防治的难度。2013年，国家海洋局北海分局在黄海绿潮监测预警工作中共发布绿潮卫星遥感监测信息快报198期，绿潮预警信息70期。
6 赤潮

6.1 赤潮灾害

2013年，北海区共发生赤潮14次，累计面积1880平方公里（表6-1），赤潮发生面积为近5年来最小。其中，黄海中部及北部发生赤潮1次，面积0.04平方公里，其余13次均发生在渤海。

2013年，北海区赤潮多发期为5月至7月（图6-1），引发赤潮的生物主要为夜光藻、抑食金球藻和中肋骨条藻等。

<table>
<thead>
<tr>
<th>发生时间</th>
<th>发生海域</th>
<th>面积（平方公里）</th>
<th>赤潮种类</th>
</tr>
</thead>
<tbody>
<tr>
<td>2月13日至3月9日</td>
<td>寿光小清河口</td>
<td>70</td>
<td>中肋骨条藻和朱吉直链藻夜光藻</td>
</tr>
<tr>
<td>5月2日至3日</td>
<td>青岛浮山湾附近海域</td>
<td>0.04</td>
<td>夜光藻</td>
</tr>
<tr>
<td>5月25日至26日</td>
<td>秦皇岛戴河口至金山嘴附近海域</td>
<td>2</td>
<td>夜光藻</td>
</tr>
<tr>
<td>5月25日至8月31日</td>
<td>河北秦皇岛至辽宁绥中附近海域</td>
<td>1450</td>
<td>抑食金球藻</td>
</tr>
<tr>
<td>6月3日至4日</td>
<td>秦皇岛戴河口至金山嘴附近海域</td>
<td>10</td>
<td>夜光藻</td>
</tr>
<tr>
<td>6月9日至12日</td>
<td>秦皇岛港西锚地至戴河口附近海域</td>
<td>16</td>
<td>夜光藻</td>
</tr>
<tr>
<td>6月18日至22日</td>
<td>秦皇岛东山浴场至金山嘴附近海域</td>
<td>7.06</td>
<td>微小原甲藻和夜光藻</td>
</tr>
<tr>
<td>6月18日至20日</td>
<td>渤海湾北部海域</td>
<td>0.01</td>
<td>夜光藻</td>
</tr>
<tr>
<td>6月19日至20日</td>
<td>辽东湾西部</td>
<td>7</td>
<td>夜光藻</td>
</tr>
<tr>
<td>6月23日至27日</td>
<td>秦皇岛港东锚地</td>
<td>4</td>
<td>夜光藻</td>
</tr>
<tr>
<td>6月26日至7月2日</td>
<td>渤海湾北部海域</td>
<td>50</td>
<td>夜光藻、红色中缢虫和尖刺拟菱藻</td>
</tr>
<tr>
<td>7月5日至8日</td>
<td>天津临港经济区东部海域</td>
<td>154</td>
<td>中肋骨条藻、诺式海链藻窄面角毛藻和柔弱拟菱形藻</td>
</tr>
<tr>
<td>7月16日至25日</td>
<td>天津汉沽-天津港航道附近海域</td>
<td>100</td>
<td>夜光藻</td>
</tr>
<tr>
<td>9月23日至28日</td>
<td>寿光小清河口</td>
<td>10</td>
<td>大洋角管藻</td>
</tr>
</tbody>
</table>
6.2 主要赤潮过程

（1）河北秦皇岛附近海域赤潮

2013 年河北秦皇岛及毗邻海域发生赤潮 6 次，总面积 1 489.06 平方公里，占北海区赤潮发生总面积的 79%。其中 5 月 25 日至 8 月 31 日，河北秦皇岛至辽宁绥中附近海域爆发的抑食金球藻赤潮，持续时间长达 99 天，最大面积达 1 450 平方公里，该海域已连续 5 年爆发此种赤潮。

（2）天津临港经济区东部海域赤潮

7 月 5 日至 7 月 8 日，天津临港经济区东部海爆发赤潮，面积达 154 平方公里，其中中肋骨条藻最大密度为 1.08×10^7 cell /L，诺式海链藻最大密度为 2.44×10^7 cell /L，窄面角毛藻最大密度为 3.20×10^6 cell /L，柔弱拟菱形藻最大密度为 5.77×10^6 cell /L。
7 海岸侵蚀

2013年，北海区重点岸段海岸侵蚀监测显示，砂质海岸局部地区仍有侵蚀现象。根据监测显示，河北省滦河口至戴河口监测岸段海岸长度99.7公里，遭受侵蚀的自然岸线长度约0.34公里，海岸侵蚀总面积0.44平方公里，最大侵蚀速度14.3米/年，与去年同期相比，侵蚀速率变缓（图7-1）；辽宁省绥中岸段监测海岸长度112.0公里，遭受侵蚀的岸线长度28.1公里；辽宁省盖州岸段监测海岸长度21.8公里，遭受侵蚀的岸线长度约18.0公里。

海岸侵蚀造成土地流失，房屋、道路、沿岸工程、旅游设施和养殖区域损毁，给沿海地区的社会经济带来较大损失。
8 海水入侵与土壤盐渍化

8.1 海水入侵

2013 年，北海区海水入侵严重地区分布于渤海滨海平原地区及黄海中北部滨海平原地区。

渤海沿岸海水入侵较为严重，主要分布于辽宁盘锦地区，河北秦皇岛、唐山和沧州地区，山东滨州市和潍坊等沿海地区，海水入侵最大距离为 10~30 公里，其中河北唐山、山东滨州市和潍坊海水入侵距离超过 20 公里。与 2012 年相比，辽宁锦州区、山东潍坊和烟台等监测站位氯离子含量明显升高，其他区域无显著变化。

黄海沿岸海水入侵影响范围较小，在黄海中北部沿岸威海和丹东局部出现轻度入侵现象，监测区入侵距离不超过 5 公里。与 2012 年相比，黄海中北部沿岸海水入侵范围基本保持稳定。

2013 年北海区重点监测区海水入侵范围见表 8-1。

8.2 土壤盐渍化

2013 年，北海区土壤盐渍化较严重的区域主要分布于辽宁、河北和山东滨海平原地区。

渤海滨海地区土壤盐渍化加重，盐渍化类型以硫酸盐型和氯化物-硫酸盐型为主，辽宁盘锦、河北唐山和沧州、天津市、山东滨州市和潍坊沿海地区盐渍化距离超过 10 公里。与 2012 年相比，河北秦皇岛和唐山盐渍化距离略有增加，辽宁营口、锦州和山东潍坊监测区域丰水期盐渍化程度明显降低，山东潍坊近岸区域枯水期盐渍化程度略有加重，其他监测区域基本保持稳定。
黄海中北部沿岸局部区域土壤盐渍化程度较为严重，多为盐土和中盐渍化土，盐渍化类型以氯化物-硫酸盐型和硫酸盐型为主，盐渍化距离最大约 6 公里。与 2012 年相比，威海沿岸区域盐渍化程度有所加重。

表 8-1 2013 年北海区滨海地区海水入侵与土壤盐渍化距离

<table>
<thead>
<tr>
<th>省（直辖市）</th>
<th>地市</th>
<th>断面名称</th>
<th>海水入侵距离（km）</th>
<th>盐渍化距离（km）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>枯水期</td>
<td>丰水期</td>
</tr>
<tr>
<td>辽宁省</td>
<td>丹东</td>
<td>丹东东港北井子镇断面</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>丹东东港西线断面</td>
<td>4.26</td>
<td>3.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>丹东长山断面</td>
<td>1.96</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>大连</td>
<td>大连甘井子区断面</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>金州区断面</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>营口</td>
<td>营口西崴子断面</td>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>营口西河口断面</td>
<td>3.42</td>
<td>3.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>营口盖州田寮断面</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>盘锦</td>
<td>盘锦唐家乡北窑村</td>
<td>2.72</td>
<td>5.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>盘锦清水乡永红村</td>
<td>-</td>
<td>17.81</td>
</tr>
<tr>
<td></td>
<td>锦州</td>
<td>锦州何屯断面</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>锦州崔屯断面</td>
<td>5.31</td>
<td>5.31</td>
</tr>
<tr>
<td></td>
<td>葫芦岛</td>
<td>龙港区北港镇</td>
<td>1.90</td>
<td>1.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>龙港区连湾镇</td>
<td>3.81</td>
<td>3.84</td>
</tr>
<tr>
<td>河北省</td>
<td>秦皇岛</td>
<td>秦皇岛抚宁断面</td>
<td>14.78</td>
<td>14.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>秦皇岛昌黎断面</td>
<td>14.43</td>
<td>12.71</td>
</tr>
<tr>
<td></td>
<td>唐山</td>
<td>唐山梨树园村断面</td>
<td>25.57</td>
<td>14.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>唐山南堡镇马庄子断面</td>
<td>20.65</td>
<td>17.59</td>
</tr>
<tr>
<td></td>
<td>沧州</td>
<td>沧州赵家堡断面</td>
<td>6.24</td>
<td>6.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>沧州冯家堡断面</td>
<td>18.08</td>
<td>18.08</td>
</tr>
<tr>
<td>天津市</td>
<td>天津</td>
<td>北部断面</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>南部断面</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>省（直辖市）</td>
<td>地市</td>
<td>断面名称</td>
<td>海水入侵距离（km）</td>
<td>盐渍化距离（km）</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>枯水期</td>
<td>丰水期</td>
</tr>
<tr>
<td>山东省</td>
<td>滨州</td>
<td>滨州无棣县</td>
<td>13.05</td>
<td>13.05</td>
</tr>
<tr>
<td></td>
<td>滨州</td>
<td>滨州沾化县</td>
<td>22.48</td>
<td>22.48</td>
</tr>
<tr>
<td></td>
<td>潍坊</td>
<td>潍坊市滨海断面</td>
<td>20.22</td>
<td>29.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>潍坊市昌邑柳疃断面</td>
<td>13.72</td>
<td>13.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>潍坊市昌邑下营断面</td>
<td>15.91</td>
<td>15.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>潍坊市寒亭断面</td>
<td>15.94</td>
<td>22.85</td>
</tr>
<tr>
<td></td>
<td>潍坊</td>
<td>潍坊市寿光断面</td>
<td>21.66</td>
<td>21.66</td>
</tr>
<tr>
<td></td>
<td>烟台</td>
<td>烟台朱旺断面</td>
<td>1.90</td>
<td>1.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>烟台海庙断面</td>
<td>4.80</td>
<td>4.85</td>
</tr>
<tr>
<td></td>
<td>威海</td>
<td>威海张村断面</td>
<td>3.04</td>
<td>2.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>威海初村断面</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

备注：- 未有海水入侵或土壤盐渍化；/ 未设监测断面
9 海平面变化

近年来，北海区沿海海平面变化总体呈波动上升趋势，并具有明显的区域特征和时间特征。2013 年，与常年相比，渤海和黄海海平面分别高 107 毫米和 88 毫米；与 2012 年相比，渤海沿海海平面基本持平，黄海沿海海平面低 20 毫米；北海区沿海 1 月和 5 月份海平面较常年同期均高 130 毫米以上。

![图 9-1 2004~2013 年渤海及黄海沿海海平面变化](image)

2013 年，渤海沿海海平面比常年高 107 毫米，比 2012 年低 3 毫米。渤海沿海各月海平面均高于常年同期，1 月和 5 月海平面分别较常年同期高 193 毫米和 185 毫米，均达 1980 年以来同期最高值；与 2012 年同期相比，11 月海平面低 132 毫米（图 9-2）。
2013年，黄海沿海海平面比常年高88毫米，比2012年低20毫米。黄海沿海各月海平面均高于常年同期，其中，1月和5月海平面分别高136毫米和170毫米；与2012年同期相比，11月海平面低200毫米（图9-3）。

2013年，辽宁、河北、天津及山东沿海海平面比常年分别高102毫米、93毫米、118毫米和110毫米，比2012年分别低8毫米、3毫米、10毫米和20毫米（图9-4）。

图9-2 2013年渤海沿海月平均海平面变化

图9-3 2013年黄海沿海月平均海平面变化
海平面变化：是由于气候变化和地壳的构造运动等原因引起的海面高度变化。

海平面上升：是一种缓发性灾害，其长期的累积效应会淹没滨海低地，破坏生态环境，给沿海地区的经济社会发展带来严重影响。海平面上升使风暴潮灾害加剧，海岸受到侵蚀，岸线变迁，沿海地区的咸潮、海水入侵与土壤盐渍化加重。
10 表层海水温度变化

表层海水温度是影响海冰、赤潮、绿潮等海洋灾害的重要因子。北海区的表层海水温度（以下简称“海温”）存在明显季节性变化，1~3 月份海温变化幅度最小，4~6 月份海温呈快速上升的趋势，9~12 月份呈快速下降的趋势，2 月份平均海温最低，8 月份平均海温最高。

2013 年北海区沿岸的年平均海温与常年基本持平，较 2012 年偏低 0.1℃。渤海沿岸 3~5 月和 11 月份的海温比常年偏低，其他月份较常年偏高；黄海中部及北部沿岸海域 4 月份和 11~12 月份海温总体较常年偏低，其他月份较常年偏高。

图 10-1 2013 年北海区典型海洋站年平均海温距平
11 对策建议

2013年是近5年来北海区各类海洋灾害造成直接经济损失较轻的一年，也是死亡（含失踪）人数最少的一年。既有自然灾害偶然性减少的原因，也源于全民的防灾减灾意识的逐步提高。在当前自然灾害的突发性、反常性和不确定性日益增强的背景下，为了最大限度地减轻灾害造成的损失，促进北海区沿海地区经济社会健康和可持续发展，提出如下对策建议：

（一）强化海洋灾害风险防范能力

继续推进北海区海洋灾害风险评估与区划工作，为沿海各省的经济发展布局和涉海工程防护规范标准制定提供科学指导。建立沿海重大工程建设的海洋灾害风险评价制度，对已建和在建的沿海核电站、化工企业、大型产业园区和城市发展区开展风险排查，及时消除安全隐患。在海洋灾害重点防御区内设立产业园区、进行重大项目建设的，应当在项目可行性论证阶段，开展海洋灾害风险评估，预测和评估风暴潮、海浪、冰和海啸等海洋灾害的影响。

（二）进一步提高海洋观测能力

进一步完善多种手段相结合的北海区海洋灾害立体观测网，提高观测网运行保障能力。加强规划，优化布局，加大海洋灾害观测覆盖密度，增强离岸观测能力，形成沿岸观测、海底观测、海上平台、浮标、潜标、船舶、航空遥感和卫星遥感等多种监测手段的有机结合。加强海上重要通道、国际航线等重点海域的观测能力建设。大力推进志愿船和应急移动观测。进一步加强海洋断面调查，提高调查装备水平。

（三）进一步提升海洋灾害预警服务水平
北海区应进一步完善海洋预报体系，加强海洋预报技术的自主研发，重点推进沿海重大设施、产业密集区和人口密集区的精细化预报工作。加强海洋预警信息发布，通过各类媒介及时发布海洋灾害预警信息，增强海洋预报的社会服务功能。

（四）加强宣传教育，提高海洋防灾减灾意识

沿海各级政府要做好海洋防灾减灾宣传教育工作。充分利用各种媒体，运用各种喜闻乐见的形式普及海洋灾害基础知识，广泛引导公众参与形式多样的防灾减灾活动，使社会公众认识到防御海洋灾害的必要性和重要性，提高海洋灾害防御意识。
北海区海洋观测与预警报服务

2013 年国家海洋局北海分局及北海区各级海洋主管部门按照国家海洋局的统一部署，加强海洋观测能力建设，提高海洋灾害预警报服务水平，圆满完成了海洋观测预报及防灾减灾工作。

2013 年北海区利用海洋站（点）、浮标、雷达、志愿船、应急移动监测平台以及卫星、航空遥感等手段对海洋水文气象要素和海洋灾害实行多手段、立体化的观测，共获取观测数据 1 亿 5 千余万组。海冰灾害应急期间，设置了 30 余个海冰陆岸监测点，同时开展了卫星遥感、船舶、航空监测及陆岸巡视。

2013 年北海区各级海洋预报机构不断改进海洋预报方法、服务内容和服务方式，增加了微博、微信等预警报发送方式，预报产品的空间分辨率和时效不断提高。全年向社会公众、沿海各级人民政府、海洋行政管理部门及涉海企事业共发布各类常规和专项海洋环境预报 2 万余份，发布海洋警报 7 万余份 (条)，圆满完成各类常规海洋环境预报和风暴潮、巨浪、海冰灾害的预警保障任务。精细化预报服务系统、渔业安全生产保障服务系统、海上溢油业务化监测和漂移预警运转良好；圆满完成黄海绿潮的应急处置、第十二届全国运动会帆船帆板比赛 (大连) 和 2013 年国际帆船世界杯亚洲站 (青岛) 的海洋环境保障服务；多次为军方海上活动、海事部门海上搜救行动、海上溢油事故处置提供水文气象资料和海洋环境预报保障，应对海洋灾害与海洋环境突发事件的保障能力进一步增强。